Programming Abstractions

Week 4-2: Y Combinator

How do we write a recursive function?

How do we write a recursive function?

(without using define)

Recall, this binds len to our function (λ (lst) ...) in the body of the letrec

This expression returns the procedure bound to len which computes the length of its argument

Why does this not work to create a length procedure? (Note let rather than letrec.)

- A. It would work but letrec more clearly conveys the programmer's intent to write a recursive procedure
- B. len is not defined inside the λ

- C. len is not defined in the last line
- D. 1en isn't being called in the last line, it's being returned and this is an error
- E. None of the above

How do we write a recursive function?

(just using anonymous functions created via λs)

Less easy, but let's give it a go!

```
(λ (lst)
  (cond [(empty? lst) 0]
      [else (add1 (??? (rest lst)))]))
```

We need to put something in the recursive case in place of the ??? but what?

```
If we replace the \ref{thm:list:equation} with (\lambda (lst) (error "List too long!")) we'll get a function that correctly computes the length of empty lists, but fails with nonempty lists
```

Put the function itself there?

Not a terrible attempt, we still have ???, but now we can compute lengths of the empty list and a single element list.

Maybe we can abstract out the function

This isn't a function that operates on lists!

It's a function that takes a function len as a parameter and returns a closure that takes a list lst as a parameter and computes a sort of length function using the passed in len function

make-length

```
(define make-length
  (λ (len)
   (λ (lst)
       (cond [(empty? lst) 0]
       [else (addl (len (rest lst)))]))))
```

This is the same function as before but bound to the identifier make-length

- The orange text (together with purple text) is the body of make-length
- ► The purple text is the body of the closure returned by (make-length len)

```
(define L0 (make-length (\lambda (lst) (error "too long"))))
```

► L0 correctly computes the length of the empty list but fails on longer lists

make-length

```
(define make-length
  (\lambda (len))
    (\lambda (lst))
       (cond [(empty? lst) 0]
              [else (add1 (len (rest lst)))])))
(define L0 (make-length (\lambda (lst) (error "too long")))
(define L1 (make-length L0))
(define L2 (make-length L1))
(define L3 (make-length L2))
Ln correctly computes the length of lists of size at most n
We need an L∞ in order to work for all lists
 (make-length length) would work correctly, but that's cheating!
```

Enter the Y combinator

```
Y is a "fixed-point combinator"
Y = (S(K(SII))(S(S(KS)K)(K(SII))))
If f is a function of one argument, then (Y f) = (f (Y f))
(Y make-length)
=> (make-length (Y make-length))
=> (\lambda (lst)
      (cond [(empty? lst) 0]
             [else (add1 ((Y make-length) (rest lst)))])
This is precisely the length function: (define length (Y make-length))
```

Let's step through applying our length function to '(1 2 3)

```
Let's step through applying our length function to '(1 2 3) (length '(1 2 3)); so lst is bound to '(1 2 3)
```

```
Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)); so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))])
```

```
Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)); so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))); lst is bound to '(2 3)
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))]))
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
=> 3
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
=> 3
```

But wait, how can that work?

Two problems:

- We defined Y in terms of Y! It's recursive and the whole point was to write recursive anonymous functions
 - Not quite, Y = (S (K (S I I)) (S (S (K S) K) (K (S I I)))), but we still need to write this in Racket
- (Y f) = (f (Y f)) but then
 (f (Y f)) = (f (Y f)) = (f (f (Y f))) = ...
 and this will never end

Defining Y

It's tricky to see what's going on but Y is a function of f and its body is applying the anonymous function $(\lambda (g) (f (g g)))$ to the argument $(\lambda (g) (f (g g)))$ and returning the result.

Never ending computation

This form of the Y-combinator doesn't work in Scheme because the computation would never end

We can fix this by using the related Z-combinator

```
(define Z  (\lambda \text{ (f)} )   (\lambda \text{ (g) (f ($\lambda$ ($v$) ((g g) $v$))))}   (\lambda \text{ (g) (f ($\lambda$ ($v$) ((g g) $v$)))))}
```

With this definition, we can create a length function (define length (Z make-length))

We can use Z to make recursive functions

```
Given a recursive function of one variable
(define foo
  (λ (x) ... (foo ...) ...)
we can construct this only using anonymous functions by way of Z
(Z (\lambda (foo) (\lambda (x) ... (foo ...)))
Factorial
(Z (\lambda (fact))
      (\lambda (n)
         (if (zero? n)
              (* n (fact (sub1 n))))))
```

What about multi-argument functions?

We can use apply!

```
(define Z*  (\lambda \text{ (f)} )   (\lambda \text{ (g) (f ($\lambda$ args (apply (g g) args))))}   (\lambda \text{ (g) (f ($\lambda$ args (apply (g g) args))))}
```

Example: map

We're applying z* to the orange function which returns a recursive map procedure

Then we're applying that procedure to the arguments add1 and '(1 2 3 4 5)

Imagine a version of Scheme without define or letrec, how can we write a recursive function foo and call it on a list? In other words, how do we write

```
(letrec ([foo (\lambda (lst) (... (foo ...) ...))]) (foo '(1 2 3)))
```

B. (let ([foo (Z (
$$\lambda$$
 (foo) (λ (lst) (... (foo ...) ...))))]) (foo '(1 2 3)))

C. It's not possible to write recursive functions without define or letrec in Scheme